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Key Points: 

 A machine learning convective trigger function greatly outperforms four CAPE-based 

triggers at two distinct convective regimes.  

 Insights are derived from the machine learning trigger that could be used to improve 

existing traditional CAPE-based triggers. 

 Results suggest that a unified machine learning trigger function could be developed for use 

in climate models.  

Abstract 

Deficiencies in convection trigger functions used in deep convection parameterizations in General 

Circulation Models (GCMs) have critical impacts on climate simulations. A novel convection 

trigger function is developed using the machine learning (ML) classification model XGBoost. The 

large-scale environmental information associated with convective events is obtained from the 

long-term constrained variational analysis forcing data from the Atmospheric Radiation 

Measurement (ARM) program at its Southern Great Plains (SGP) and Manaus (MAO) sites 

representing, respectively, continental mid-latitude and tropical convection. The ML trigger is 

separately trained and evaluated per site, and jointly trained and evaluated at both sites as a unified 

trigger. The performance of the ML trigger is compared with four convective trigger functions 

commonly used in GCMs: dilute convective available potential energy (CAPE), undilute CAPE, A
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dilute dynamic CAPE (dCAPE), and undilute dCAPE. The ML trigger substantially outperforms 

the four CAPE-based triggers in terms of the F1 score metric, widely used to estimate the 

performance of ML methods. The site-specific ML trigger functions can achieve, respectively, 91% 

and 93% F1 scores at SGP and MAO. The unified trigger also has a 91% F1 score, with virtually 

no degradation from the site-specific training, suggesting the potential of a global ML trigger 

function. The ML trigger alleviates a GCM deficiency regarding the overprediction of convection 

occurrence, offering a promising improvement to the simulation of the diurnal cycle of 

precipitation. Furthermore, to overcome the black box issue of the ML methods, insights derived 

from the ML model are discussed, which may be leveraged to improve traditional CAPE-based 

triggers.  

 

Plain Language Summary 

Deficiencies in convection trigger function, a set of conditions used to determine whether the 

convection will be activated at a given time in General Circulation Models (GCMs), have critical 

impacts on model simulated climate. This work presents a novel convection trigger function using 

a machine learning (ML) model. Environmental information on convective events are obtained 

from long-term data from the Atmospheric Radiation Measurement (ARM) program at its 

Southern Great Plains (SGP) and Manaus (MAO) sites, which represent two distinct convective 

regimes. The ML trigger is separately trained and evaluated per site, and jointly trained and 

evaluated at both sites as a unified trigger. The ML trigger substantially outperforms the four 

CAPE-based triggers commonly used in GCMs. The unified trigger virtually has no degradation 

from the site-specific training, suggesting some promise to develop a global trigger function. The 

ML trigger alleviates a GCM deficiency regarding the overprediction of convection occurrence, 

offering a promising improvement to the simulation of the diurnal cycle of precipitation. 

Furthermore, to overcome the black box issue of the ML methods, insights derived from the ML 

model are discussed, which may be leveraged to improve traditional CAPE-based triggers. 
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1 Introduction 

Convection is critical to precipitation, heat and moisture transport, cloud amount and distribution, 

as well as to the global energy budget (Arakawa and Schubert, 1974; Arakawa, 2004). Properly 

representing convection is critical to successful numerical weather prediction (NWP) and climate 

simulations by general circulation models (GCMs). However, because current coarse-resolution 

models cannot explicitly resolve convection, it must be represented with convective 

parameterizations. Deficiencies in these parameterizations can cause a multitude of problems in 

simulation results. For example, GCMs often rain too frequently and at reduced intensity (Dai and 

Trenberth, 2004; Trenberth et al. 2003) and these deficiencies are conspicuously manifested in 

simulating the diurnal cycle of precipitation (Lee et al., 2007; Covey et al., 2016). Over land, 

convection is often overly active, and the diurnal cycle cannot be well-represented during the 

summer season (Dai, 2006; Lee et al., 2007). Over ocean, the amplitude of the diurnal cycle is 

typically too weak, and the peak time does not match observations (Dai, 2006). These problems 

are known to be closely related to convection trigger function used in the convective 

parameterizations (e.g., Xie and Zhang, 2000; Xie et al., 2004a; Dai and Trenberth, 2004; Lee et 

al., 2008; Xie et al., 2019; Zheng et al., 2019; Wang et al., 2020). 

 

The convective trigger in a convective parameterization determines whether the convection will 

be activated at a given time. Dating back to early developments of cumulus parameterization, Kuo 

(1974, 1965) proposed a large-scale moisture convergence-based trigger. Fritsch and Chappell 

(1980), Kain and Fritsch (1993), and Rogers and Fritsch (1996) developed trigger functions by 

considering perturbations of vertical velocity and temperature on the large-scale low-level 

convergence to inhibit convection when the low-level upward motion was weak. Nowadays, most 

GCMs assume that convection is triggered when there is positive convective available potential 

energy (CAPE), a measurement of atmospheric instability and the potential energy that can be 

released by convection. For instance, in the Zhang-McFarlane (ZM) deep convection scheme 

(Zhang and McFarlane, 1995), convection is triggered when CAPE is larger than a specified 

threshold value. When this threshold is reached, the accumulated instability is released over a 

prescribed time scale. However, this type of trigger function tends to activate convection too 

frequently because CAPE is almost always positive in the tropics and can also be generated easily 

during daytime in the warm season over midlatitude lands due to surface solar heating. There are 
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published works that attempt to alleviate this problem by introducing dynamic and thermodynamic 

constraints to prevent CAPE from being released too early. For example, Xie and Zhang (2000) 

found that the observed precipitation correlates well with a positive dynamic CAPE generation 

rate (dCAPE), generated by the large-scale advective tendencies of temperature and moisture. 

They proposed a dCAPE-based trigger that assumes convection is triggered when there is positive 

dCAPE in addition to the presence of positive CAPE. Xie et al. (2019) further improved the 

dCAPE trigger with an unrestricted air parcel Launch Level (ULL), which allowed parcels to 

launch above the boundary layer to capture nocturnal elevated convection, and led to a dramatic 

improvement in the phase of the diurnal cycle of precipitation. Neale and Jochum (2008) 

introduced entrainment dilution into the CAPE calculation, which was used in the atmosphere 

models of the Community Earth System Model Version 2 (CESM2, Danabasoglu et al. 2020) and 

the Energy Exascale Earth System Model (E3SM, Xie et al. 2018; Rasch et al. 2019).  

 

However, these triggers also suffer from large uncertainties and are ad hoc because the mechanism 

of deep convection occurrence is not fully understood; so most convective parameterization 

schemes are simplified to empirical CAPE-based conditions with artificial thresholds. Suhas and 

Zhang (2014) and Song and Zhang (2017) evaluated several trigger functions against data from 

the Atmospheric Radiation Measurement (ARM) user facility, including those used in the 

Arakawa-Schubert (AS) scheme (Arakawa & Schubert, 1974), the Bechtold scheme (Bechtold et 

al., 2001), the Donner scheme (Donner,1993), the Kain-Fritsch (KF) scheme (Kain, 2004), the 

Tiedtke scheme (Tiedtke, 1989), and the four variants of CAPE-based triggers (Zhang and 

McFarlane, 1995; Xie and Zhang, 2000; Neale et al., 2008). Their results revealed that the skill of 

those trigger functions leaves much room for improvement.  

 

Machine learning (ML) methods have demonstrated substantial skill for classification and 

regression and have gained recent attention in the geosciences (Kurth et al., 2018; Ham et al., 

2019). ML-based physical parameterizations have been developed for GCMs to improve climate 

simulations, such as for parameterization of convection and atmospheric chemistry (Brenowitz and 

Bretherton, 2018, 2019; Gentine et. al., 2018; Rash et. al., 2018; Silva et. al., 2019; Han et. al., 

2020). ML methods have also been applied to predict specific physical quantities or events, such 

as rainfall rates (Tao et al., 2016; Miao et al., 2019), tropical cyclone genesis (Zhang et. al., 2019), 
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and ENSO (Ham et. al., 2019). Using ML in these geoscience applications can achieve a more 

accurate prediction by, for example, learning from high-resolution simulations or multi-source 

observations. The success is gauged not only to their flexibility to represent complex multi-

variable non-linear structures, but also to their low computational cost once the models or schemes 

are well trained.  

 

In this study, we use a ML model to construct a novel convection trigger function trained on the 

long-term variationally constrained ARM forcing dataset (VARANAL) at its Southern Great 

Plains (SGP) site, in the central US, and the Manaus (MAO) site, in the Amazon basin. The ML 

model XGBoost is trained on predictive factors that are associated with convective processes, such 

as surface heat fluxes, CAPE, lifting condensation level (LCL), convective inhibition (CIN), 

vertical distribution of temperature, humidity, wind shear, and large-scale advective tendencies of 

water vapor and dry static energy. We will show that the ML trigger scores equally high for both 

site specific and cross-site trainings and offers a promising improvement to simulation of the 

diurnal cycle of precipitation. 

  

The paper is organized as follows: Section 2 describes the training datasets and predictors. Section 

3 describes commonly used CAPE-based convection trigger functions and the ML XGBoost 

trigger functions (hereafter the XGB triggers) and the performance metrics used for assessment. 

Section 4 presents the performance of ML methods including comparison with previous studies. 

Conclusion and discussions are given in Section 5. 

2 Data 

Data used for this study are from the ARM continuous forcing and evaluation data products at its 

SGP and MAO sites (Xie et al. 2004b, Tang et al. 2016). The data were developed using NWP 

analyses constrained by the observed surface and top-of-atmosphere measurements using a 

variational analysis approach (Zhang and Lin, 1997; Zhang et al. 2001). At SGP, the Rapid Update 

Cycle (RUC) analysis product from the National Oceanic and Atmospheric Administration 

(NOAA) provides the background fields (Xie et al. 2004b), while for MAO the European Center 

for Medium-Range Weather Forecasts (ECMWF) analyses are used (Tang et al. 2016). Eleven 

boreal summer seasons (June, July, August) from 1999 to 2009 are used for SGP, and two years 
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of data are used for MAO from 2014 to 2015 that cover the Green Ocean Amazon 

(GoAmazon2014/15) field campaign (Martin et al., 2016). The datasets have a time resolution of 

1 h for SGP and 3 h for MAO. Both datasets have a vertical resolution of 25 hPa.  

 

A ML trigger is sensitive to how it is trained. For a trigger to be functional in a large-scale model, 

it should be trained with data accounting for all convective conditions. A broad subset of these 

conditions is represented here using data for continental mid-latitude summer and tropical 

convective conditions. This study illustrates the efficacy of the ML-based trigger and the 

sensitivity to how the trigger is trained. The ML models are evaluated by separately training for 

the two sites, as well as a joint training that combines the data from both sites. The training dataset 

contains a number of large-scale predictors summarized in Table 1. Because moist convection 

depends not only on the atmospheric state near the surface (temperature, specific humidity, etc.) 

but also on their vertical distribution (Emanuel, 1994), the predictors include scalar variables—

such as surface heat fluxes, surface temperature and relative humidity, CAPE, LCL, and CIN—as 

well as the vertical profiles of temperature, specific humidity, wind shear, and advective tendencies. 

These predictors are all involved in triggering the convection and the ensuing precipitation 

processes. For example, CAPE is often used as the criterion to determine the occurrence of deep 

convection (Zhang and McFarlane, 1995), and surface heat fluxes are the main sources of heat and 

moisture for local convection that can disturb the large-scale atmospheric column (Kuo, 1974) and 

enhance surface precipitation (Tao et al., 1991). For strong convection, horizontal moisture 

convergence is a dominant source of water vapor. CIN represents how much kinetic energy must 

be added to a parcel to lift it to the level of free convection. If CIN is sufficiently large, deep 

convection can be suppressed. The LCL is included since it is a critical property of a convective 

air parcel that determines cloud base height and the thermodynamic structure of the convective 

cloud plume. Finally, previous work from observational and numerical studies demonstrated that 

vertical wind shear affects the intensity and organization of convection (Chen et. al., 2015). To 

simplify interpretation of the results, the vertical profiles of temperature, humidity, advective 

tendencies and wind shear are represented by three layers of 700-800, 300-700, and 200-300 hPa 

corresponding to, respectively, the lower, middle, and upper troposphere (Gyakum and Cai, 1990; 

Chen et. al., 2015). We note that the performance of the trigger is similar to when the values from 

the fully profiles are used (not shown). 
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The ML model must be trained with both convective and non-convective events to determine the 

unique features required for convection. Because the definition of convection occurrence is 

ambiguous (Suhas and Zhang, 2014; Song and Zhang, 2017), exactly determining the onset of 

deep convection is nontrivial. In this study, the occurrence of deep convection is determined when 

the precipitation rate is greater than or equal to 0.5 mm/hour, following Suhas and Zhang (2014) 

and Song and Zhang (2017). Note that artificial and empirical thresholds may introduce some 

uncertainties. The precipitation threshold cannot distinguish convective and stratiform 

precipitation, but the threshold is justifiable as large precipitation in summer over midlatitude 

continents and in the tropics are commonly associated with convective events. It is noted that the 

cloud top or cloud thickness could also define the occurrence of deep convection. However, they 

still have uncertainties, depending on the evolution stage of the convective system. Further 

research could possibly explore a combination of precipitation and cloud geometries to determine 

convection that might lead to a more robust indicator when data are not missing. 

3 Method 

In this study, the ML trigger function is determined by the XGBoost algorithm, which is a state-

of-the-art classifier that is widely used by data scientists to achieve perfect performance on many 

ML challenges (Chen and Guestrin, 2016; Vanichrujee et al., 2018; Zhong et al., 2018; Zamani 

Joharestani et al. 2019; Zhang et al., 2019; Zheng and Wu, 2019). For comparison, four variants 

of the CAPE-based trigger functions are evaluated: undilute CAPE, dilute CAPE, undilute dCAPE 

and dilute dCAPE. 

3.1 CAPE-based convection trigger functions 

CAPE-based triggers are commonly used in deep convection schemes such as the ZM scheme, 

which is one of the common deep convection schemes used in several climate models including 

the NCAR CAM and the Department of Energy E3SM Atmosphere Model (EAM). CAPE is 

defined as the vertical integral of the local buoyancy of a parcel from the launch level to the 

equilibrium level,  

CAPE =  ∫ 𝑅𝑑(𝑇𝑣𝑝 − 𝑇𝑣𝑒)𝑑 ln 𝑝
𝑝𝑏

𝑝𝑡
                 (1) 
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where Tvp and Tve are, respectively, the virtual temperature of the parcel and its environment. In 

the ZM scheme, the launch level is the level with the largest moist static energy within the 

boundary layer. The equilibrium level is where the air parcel become buoyancy neutral with 

respect to the environment. Rd is the gas constant for dry air. pt is the pressure of the equilibrium 

level and pb is the pressure of the launch level. This definition of CAPE is hereafter called undilute 

CAPE. By construction, the undilute CAPE trigger scheme prevents the accumulation of instability 

in the atmosphere beyond the threshold value and results in generally triggering convection too 

frequently and too early during the day (e.g., Xie and Zhang, 2000).  

 

Neale et al. (2008) introduced the dilution effect of entrained air into the CAPE calculation 

(hereafter called dilute CAPE). In this trigger function, the entropy S of an ascending parcel is 

governed by, 

𝜕𝑚𝑆

𝜕𝑧
=

𝜕𝑚

𝜕𝑧
𝑆̅ = 휀𝑆̅                  (2) 

Where m is the mass of a parcel, and  is the environmental entrainment of the rising air parcel per 

unit height which is assumed to be a constant (e.g., 10-3 m-1). 𝑆̅ is the entropy of the environmental 

air. The temperature and specific humidity of a parcel are updated when the entropy S at each 

height is obtained. Through the changes in the temperature and specific humidity of the air parcel, 

the latent heat from condensation and freezing is also involved in the CAPE calculation (Zhang, 

2009). Convection is initiated when the dilute CAPE value exceeds the threshold (e.g., 70 J/kg as 

used for CAM5 low-resolution configuration). This definition of trigger function is used in the 

EAM (Golaz et al., 2019) and the NCAR CAM version 6 (CAM6) (Gettelman et al., 2019). 

 

Xie and Zhang (2000) introduces the dynamic CAPE generation rate (dCAPE) trigger, which is a 

function of the large-scale advective tendencies of temperature and moisture and is defined by:  

dCAPE =
𝐶𝐴𝑃𝐸[𝑇 + 𝑎𝑑𝑣(𝑇)𝛿𝑡, 𝑞 + 𝑎𝑑𝑣(𝑞)𝛿𝑡] − 𝐶𝐴𝑃𝐸[𝑇, 𝑞]

𝛿𝑡
         (3) 

where T and q are temperature and specific humidity and adv(T) and adv(q) are the corresponding 

advective tendencies, which include both horizontal and vertical advections. δt is the time interval, 

which is, respectively, 1 hour for the SGP data and 3 hours for the MAO data. This definition can 

be applied to either undilute or dilute CAPE. Deep convection is assumed to be initiated when the 

large-scale advection has a positive contribution to CAPE. In other words, the dCAPE value should 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

be greater than zero. Suhas and Zhang (2014) and Song and Zhang (2017) set the dCAPE threshold 

at 65 J/kg/h. The dCAPE trigger was found to be one of the best performers among serval trigger 

functions—such as the dilute CAPE, Bechtold, Tidetke, and heated condensation framework 

(HCF)—when compared against the ARM data at SGP, MAO, as well as the data collected from 

the GARP Atlantic Tropical Experiment (GATE) and the Tropical Ocean Global Atmosphere 

Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) (Suhas and Zhang, 2014; 

Donner and Phillps, 2003; Song and Zhang, 2017; Wang et al., 2020).  

3.2 XGBoost convection trigger functions 

XGBoost, short for eXtreme Gradient Boosting, is a state-of-the-art, tree-based ML classification 

and regression method. It is designed to be highly efficient, flexible and portable, and has been 

successfully applied in many applications, achieving extraordinary performance (Chen and 

Guestrin, 2016). 

 

The gradient boosting algorithm is the foundation of XGBoost, which is an ensemble approach 

combining many basic weak ML methods into a more generalized model, illustrated in Figure 1. 

Typically, a decision tree is used as the basic weak ML model, which mimics how humans think 

and make decisions based on a series of rules that are organized in a tree shape (Quinlan 1987). 

Rather than training all models in isolation of one another, XGBoost works in a stage-wise manner, 

iteratively adding a tree that aims to correct the errors of prior trees and then combining all trees 

in a weighted average to make the final prediction. The advantage of the boosting methods is that 

the new model being added focuses on correcting the mistakes remaining from the previous models. 

In contrast, other ensemble methods train the models in isolation and the results from all trees are 

combined by averaging or applying the “majority rules” (e.g., as in the Random Forests method); 

however, training the models in isolation might simply lead to each making the same mistakes. 

 

The XGBoost trigger functions (XGB triggers) are trained and evaluated by the long-term ARM 

continuous forcing data. The dataset consists of the selected environmental predictors shown in 

Table 1 and the predictand, which is a binary variable indicating whether or not convection is 

triggered. The trigger functions for SGP and MAO can be trained separately or jointly. 
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3.3 Performance metrics 

The output of the trigger functions is whether deep convection occurs or not; so a 2x2 contingency 

table serves to count the number of the four possible outcomes in a two-category classification. If 

a trigger function correctly determines a convective or a non-convective event, the samples from 

the testing set are labeled, respectively, as true positive (TP; correct convection prediction) or true 

negative (TN; correct non-convection prediction). Those incorrectly determined are labeled as 

false positive (FP; overprediction) or false negative (FN; underprediction).  

 

Precision (P) and Recall (R) are the two performance criteria that are calculated based on the 

contingency table, defined as (Van Rijsbergen 1986; Olson and Delen 2008):  

Precision (P) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
           (4) 

Recall (R) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                 (5) 

Precision is the percentage of true positives in the total predicted positive case. Many 

overpredictions will lead to a low value in Precision. Recall is the percentage of true positives in 

the total actual positive cases. Many underpredictions will lead to a low value of Recall. Ideally, 

both precision and recall are 1.0. A better trigger function will produce more correct determinations 

with less overprediction and underprediction. The F1 score is a more robust performance metric 

than either P or R, which is the harmonic mean of the precision and recall, defined as: 

      F1 =  
2𝑃𝑅

𝑃+𝑅
                   (6) 

The F1 score has a maximum value of one and will achieve a good performance only when both 

Precision and Recall are high. It is a widely used measurement to estimate the performance of 

ML methods (Alioto et al., 2015; Huang et al., 2018; Luo et al., 2019; Zhang et al, 2019). 

 

To understand how the ML model performs overall across different categories (denoted by a and 

b below), we use the Macro-manner to compute Precision, Recall and F1 score, which computes 

these criteria independently for each category and then takes the average (Yang, 1999): 

{
P𝑎 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 , P𝑏 =

𝑇𝑁

𝑇𝑁+𝐹𝑁

P𝑚𝑎𝑐𝑟𝑜 =  
𝑃𝑎+𝑃𝑏

2

        (7) 
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{
R𝑎 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 , R𝑏 =

𝑇𝑁

𝑇𝑁+𝐹𝑃

R𝑚𝑎𝑐𝑟𝑜 =  
𝑅𝑎+𝑅𝑏

2

      (8) 

 

{
F1𝑎 =

2𝑃𝑎𝑅𝑎

𝑃𝑎+𝑅𝑎
 , F1𝑏 =

2𝑃𝑏𝑅𝑏

𝑃𝑏+𝑅𝑏

F1𝑚𝑎𝑐𝑟𝑜 =  
𝐹1𝑎+𝐹1𝑏

2

    (9) 

 
 

4 Results 

4.1 Performance of the trigger functions 

The performance of each of the tested trigger functions is evaluated according to the contingency 

table and its derived performance criteria, including Precision, Recall and the F1 score. Table 2 

lists the number of the samples used at the SGP and MAO sites. 80% of the total samples, randomly 

drawn, are used for training, and the remaining 20% for testing. The ‘Positive’ and ‘Negative’ 

columns represent that convection is triggered and not triggered. The XGB trigger functions are 

trained by the ‘Train’ samples and is evaluated by the ‘Test’ samples. To make the testing of the 

traditional CAPE-based trigger functions comparable to the ML trigger, they are also evaluated by 

the ‘Test’ samples. 

  

Table 3 shows the four probable outcomes of the contingency table at the SGP and MAO sites for 

the CAPE-based and the XGB triggers. In this comparison, the XGB triggers are separately trained 

for the two sites. The XGB triggers achieve the best performance among the five, with smaller FP 

and FN, and larger TP and TN at both SGP and MAO. In contrast, the undilute CAPE trigger yields 

very large FP values, indicating heavy overprediction of convective cases. Dilute CAPE also tends 

to overpredict convective events, though far less severe (smaller FP) compared to the undilute 

CAPE trigger. The direct consequence is that the deep convection parameterization with these 

triggers would be activated too frequently. The FP values with dilute and undilute dCAPE triggers 

are much lower. This is not unexpected and is confirmed by previous works (Xie and Zhang, 2000; 

Xie et. al. 2004a; Suhas and Zhang, 2014). For the XGB triggers, FN is slightly greater than FP, 

which indicates that the number of overpredictions is lower than the number of underpredictions. 

In other words, it has a slight tendency to classify a case as non-convective. The presence of this 
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tendency is because the number of non-convective cases is far larger than the convective cases in 

the training set, as ML models tend to concentrate on predicting the major categories accurately 

while ignoring the minor ones (Estabrooks et al., 2004; Ramyachitra et al., 2014). 

 

Figure 2 presents the performance (F1 score, Precision and Recall) of all trigger functions based 

on the results shown in Table 3. In terms of the F1 score, the XGB triggers perform the best with 

91% and 93% accuracy at SGP and MAO, respectively. In comparison, the best performance for 

the CAPE-based trigger function, dilute dCAPE, is only 79% and 85% at the two sites. Since the 

pure CAPE (dilute or undilute) trigger functions activate the convection too frequently, they 

perform the worst. Such overprediction biases are largely reduced with both dCAPE triggers, 

leading to much improved Precision and F1 scores. The improvement of the XGB triggers relative 

to dilute dCAPE seems smaller at MAO compared to SGP. The time resolution could be a non-

negligible factor for the ML performance. The time interval at MAO is 3-hour, while it is 1-hour 

at SGP. We test the SGP performance at a 3-hour interval and find the F1-score is reduced to 0.84, 

which is substantially lower than the F1-score of 0.91 with 1-hour interval data.  

 

Although the ML trigger function attains the best performance, as alluded to above when sampling 

the data at longer time interval, the outcome may depend on the size of the training samples. This 

can be seen in Figure 3 that shows the training and testing performance as a function of training 

dataset size (also called the learning curve) for the XGBoost model. Here the F1 performance score 

of the XGB triggers are determined using the k-fold cross-validation method (Kohavi, 1995). This 

method is used to ensure that the performance evaluation has robust credibility, because the 

performance of ML algorithms usually also heavily depend on the choice of training set. The cross-

validation method first divides the whole dataset into k subsets. Then each subset is in turn used 

for testing, with the remainder for training. After k iterations, the final performance reported by 

the k-fold cross-validation is the average of the F1 score of each iteration (here k is 5). Each point 

in the learning curve represents a model that is trained by a subset of the above training data, with 

its size given by the x-axis. The corresponding cross-validation score is always determined using 

the full testing set. As the figure shows, the testing performance increases as the size of the training 

dataset increases at SGP, suggesting that even more improvement is possible if a larger dataset 

were used to build the XGBoost trigger. In contrast, the trigger at MAO does not benefit as much 
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from more data. Note that the number of available cases at SGP is almost four-fold greater than at 

MAO, the difference in the learning curves implies a greater diversity of convective environments 

that must be mastered at SGP. 

 

4.2 Time series and diurnal cycle 

The performance of different convective triggers can be more clearly seen in their skills in 

predicting individual convective events. Figures 4 and 5 present the time series of convection 

occurrence predicted by all trigger functions at SGP and MAO, respectively. Here the XGB 

triggers are re-trained with the first three quarters of the entire VARANAL dataset for the purpose 

of displaying continuous time series and diurnal cycle for the last quarter. The training and testing 

data are therefore sequentially divided, while the previous training and testing data for Figure 2 

and tabulated in Table 2 are randomly drawn. The last quarter of the dataset is used to evaluate the 

performance and presented in these two figures. The evaluation portion of the time series are the 

summer seasons from 2006/06/16 12:00 Coordinated Universal Time (UTC) to 2008/08/31 23:00 

at SGP and from 2015/07/02 12:00 to 2015/12/31 21:00 at MAO. Precipitation is also shown for 

reference and is used to directly check whether deep convection is predicted when the precipitation 

rate is over 0.5mm/h.  

 

For SGP, the convection events predicted by the XGB trigger is very close to the observations. 

The dilute dCAPE trigger also has a frequency of convection similar to that from observations and 

the XGB trigger, but it does not agree on timing. The other three CAPE-based trigger functions all 

activate convection too frequently, especially the undilute dCAPE and undilute CAPE. For MAO 

compared with observations, the XGB trigger and the dilute dCAPE show similarly good skill. 

The dilute CAPE activates deep convection surprisingly less frequently. Less frequent convective 

triggering however does not mean performing better. By inspecting the corresponding contingency 

table (not shown), it turns out that while total convective events (TP + FP) are underpredicted, 

false positive events (FP) are substantially overestimated. The resulting performance is still much 

poorer compared to using the dCAPE trigger, consistent with the findings in Song and Zhang 

(2017). The undilute CAPE and the undilute dCAPE give more overpredictions than their dilute 
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counterparts, especially the undilute CAPE trigger that dramatically overpredicts the convective 

events.  

 

The diurnal cycle of precipitation is an important benchmark to measure the amount, frequency, 

intensity, and duration of precipitation. However, current climate and weather models have 

difficulties in capturing the diurnal variation of precipitation (Lee et al 2007, Covey et al. 2016). 

The role of the convective trigger function is particularly exemplified in Xie et al. (2019), which 

broadly improved the diurnal cycle of precipitation around the globe in E3SM using the dilute 

dCAPE trigger along with an unrestricted air parcel launch level (ULL) method. Figure 6 shows 

the diurnal frequency of convection predicted by XGBoost, dilute dCAPE, undilute dCAPE, and 

dilute CAPE. The undilute CAPE is not shown because it substantially overpredicts convective 

occurrences (i.e., Figures 4 and 5) and, if shown, the y-axis would be stretched, obscuring the 

differences to be discussed. At the SGP (Figure 6a), the dilute CAPE trigger (red) clearly would 

predict a very different diurnal occurrence frequency than observed, with a very strong and broad 

peak spanning early afternoon to early evening. The shape of diurnal occurrence predicted by the 

dilute dCAPE trigger (green) aligns reasonably well with observations, although its frequency is 

lower throughout most of the day. The performance of the undilute dCAPE (purple) is worse than 

dilute dCAPE (green), as it still activates convection too frequently throughout the day. This is 

also reflected in Figure 4. The XGB trigger mostly outperforms the dCAPE trigger in terms of 

diurnally varying counts of the convective occurrence. Similarly at MAO (Figure 6b), the better 

performance of the dCAPE and the XGB trigger in predicting diurnal convection is even more 

clear compared to the dilute CAPE trigger. Undilute dCAPE (purple) generally outperforms other 

triggers in the early morning (< 8 LST). Although it triggers convection more frequently than 

observations from the afternoon to nighttime, its positive bias from observations is similar in 

magnitude to the negative bias of the XGB trigger (orange) which both performs better than dilute 

dCAPE (green). We note that the XGB triggers underpredict the observed precipitation frequency 

at the two sites, which could be caused by the imbalance of the training dataset in which the number 

of non-convection cases is much larger than that of the convection cases. This is relevant because, 

as noted previously, ML models tend to concentrate on predicting the major category, which in 

this case is the non-convection events. We have tried restricting the training to use an equal number 
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of cases for the two categories by under-sampling the non-convective events, but the improvement 

was not significant because the total number of training dataset becomes smaller.   

4.3 Interpretation of the XGB triggers 

Though the XGB triggesr achieve better performance than the traditional CAPE-based schemes, 

it is a black-box model from which it is difficult to extract explicit knowledge due to its 

complicated structure consisting of hundreds of weak ML models, and the high dimensionality of 

the problem. For the sake of understanding how to improve convection parameterization schemes 

in use, simply replacing them with a machine-learning-based black-box model is less than 

satisfactory as explicit knowledge about the model is critically useful. The XGBoost method can 

provide the relative importance index of each predictor in its training process, which can help 

quantify the contribution of each predictor to the determination of convection. The decision tree is 

the foundation of the XGBoost method. In the tree structures, each non-leaf node selects one 

predictor and determines an optimal threshold, which partitions the dataset into two subsets. This 

process is crucial for building the tree. The principle is to make the subsets have a high purity (i.e., 

being composed of samples having the same category). Breiman (2001) proposed the mean 

decrease impurity importance (MDI) to measure the relative importance of each predictor by 

averaging the weighted impurity decrease with regard to this predictor over all nodes in one tree 

and then weighted averaging over all trees in the ensemble-based algorithm. Here the weight is 

defined as the fraction of subset under a node, and the impurity measure can be the variance, the 

Shannon entropy (Shannon, 1948), or the Gini index (Breiman, 2001). 

 

Note that predictor indices sum to 1.0. Figure 7 displays the top 10 most important predictors when 

the XGB triggers are trained at SGP and MAO. Dilute dCAPE is the most important predictor for 

both SGP and MAO. Among the total of 21 predictors shown in Table 1, the relative importance 

index of the dilute dCAPE dominates at over 40%. The other important predictors standing out at 

SGP are the surface relative humidity and latent heat flux, while at MAO they are latent heat flux 

and low level temperature. Wind shear does not appear in the top 10 for either site. 

 

Entrainment rate exerts a strong control on the degree of dilution and the magnitude of dCAPE, 

thereby affecting the occurrence and intensity of convection. Figure 8 shows the consistent 
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relationship between the relative importance index of the dilute dCAPE predictor from the XGB 

triggers and the XGB trigger performance as a function of entrainment rate. As can be seen, both 

are sensitive to the entrainment rate. The XGB triggers at SGP and MAO achieve the best 

performance when the entrainment rate is slightly lower than 1.0x10-3 m-1, where the importance 

index of the dilute dCAPE is also the highest. This result is consistent with that of Song et al. 

(2017). (Please also see the comment in the response, may want to limit the left most point. If too 

close to 0, it is effectively undilute dCAPE 

 

Accordingly, we can infer explicit knowledge about convection occurrence based on these key 

predictors using the decision tree that has easy interpretability.  Figure 9 illustrates the decision 

process at SGP and MAO. Two rules can be derived from the decision tree. The first one is 

acquired by the root nodes, which classifies the dataset into two branches through thresholds of 

dilute dCAPE. The decision trees automatically suggest the optimal thresholds of 62 J/kg/h and 37 

J/kg/h, respectively, at SGP and MAO. These thresholds are attained by maximizing the purity of 

each branch under the root node in terms of non-convective or convective cases. Cases are 

classified as non-convective when the dilute dCAPE values are less than or equal to the thresholds, 

while they are classified as convective when the values are greater than the thresholds. The 

performance under these thresholds, shown in Figure 10, is not worse than that using 65 J/kg/h as 

the threshold, which is a well-tuned value used by Suhuas and Zhang (2014; hereafter ‘SZ 

threshold’), and is better than using 0 J/kg/h as the threshold as well (e.g., Xie et. al., 2019). 

Because a higher dilute dCAPE value implies a higher possibility of convection event, a higher 

threshold would lead to a better Precision score by limiting FP (Eq. 4) in terms of the convection 

cases. Although the Precision score based on the threshold from the decision tree at MAO is 

slightly lower than when using the SZ threshold, due to the smaller threshold value and fewer 

training data compared to what are used at SGP, the Recall score is better (Eq. 5) and helps achieve 

a good balance between Precision and Recall.  

 

The other rule starts from the root node until reaching the leaf nodes. The rules in each path are 

connected by the ‘AND’ logic. Each leaf node represents a different combination of rules. We 

select the leaf nodes marked in the dashed boxes in Figure 9 to generate a reduced number of 

simple “Machine Learning Explicit Rules (MLER)” for classification of the whole dataset. These 
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leaf nodes were selected because they can correctly separate convective/non-convective events to 

the greatest extent and cover most of the dataset. In other words, these leaf nodes have the 

maximum purity. The rules at SGP are:  

NonConvective {
dilute dCAPE ≤ 26 J/kg/h

RHsair ≤ 87 %
           (10) 

 

          Convective: dilute dCAPE > 168 J/kg/h       (11) 

And the rules at MAO are: 

NonConvective {
dilute dCAPE ≤ 23 J/kg/h

lhflx ≤ 114 W/𝑚2            (12) 

 

          Convective: dilute dCAPE > 66 J/kg/h           (13) 

The MLER trigger scheme not only contains the stricter dilute dCAPE threshold for non-

convection and convection, but also incorporates thresholds of other important factors of XGB 

triggers, including surface air relative humidity and latent heat flux. Note that the rules in Eqs (10) 

- (13) are not closure conditions so they are not able to cover the entire dataset. As shown in the 

rightmost column of Figure 10, the MLER trigger covers 77% of SGP dataset and 62% of MAO 

dataset and achieves 89% and 99% F1 scores. It should be noted that the dilute dCAPE threshold 

rules cover 100% of the SGP and MAO dataset. If we evaluate the dCAPE threshold rules by the 

samples screened by the MLER rules, it would be an unfair comparison because the MLER rules 

have been appended to the dilute dCAPE rule. As seen in Figure 10, the SGP has a great Precision 

score (low over-prediction). This is because this MLER scheme imposes a stricter dilute dCAPE 

criterion on convection/non-convection events than both the root threshold of decision tree and the 

SZ threshold. Similarly, at MAO the criterion of dilute dCAPE in MLER to determine convection 

events is slightly larger than the SZ threshold, leading to a slight increment in terms of Precision 

score. On the other hand, due to the lower dilute dCAPE threshold and the additional latent heat 

flux constraint, the number of overpredictions is very low. According to Eq. 5, the Recall score 

has been improved significantly.   

4.4 A unified machine learning trigger function 

Training the XGB triggers at each grid box in a GCM will be extremely computationally intensive 

and, even if accomplished, the result would be undesirable for use in the model that requires basic 
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generalized parameterizations for simulation of variable climates. Therefore, building a unified 

scheme like the traditional parameterization scheme is more pragmatic for real use. Given data 

from the two sites in this study, one way to build a unified scheme for both sites is to verify whether 

the ML XGB model trained by one site also works for the other site. Another method is to train a 

unified scheme by joining dataset of both sites. Figure 11 shows the performance of the XGB 

triggers with these two approaches, along with the standalone XGB triggers for SGP and MAO for 

reference. The unified trigger built on the joint dataset has a 91% F1 score when evaluated by the 

combined testing dataset of SGP and MAO. Even when tested separately for each site, the unified 

trigger achieves, respectively, F1 scores of 91% and 92%. Thus, the unified trigger function 

performs as well as when the training is performed separately at each site. This result has an 

important implication that a suitably developed uniform ML trigger function, after accounting for 

all major convective regimes, may be feasible for all grids in a GCM.  

 

To demonstrate the potential, we further apply the unified XGB triggers to the independent ARM 

Intensive Observation Period (IOP) data, including the SGP data in the summer of 1997 (SGP97) 

and the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) in 2006 (TWP06), which 

are the testing data for the unified XGB triggers. Figure 12 compares this method and the 

traditional rule of dilute dCAPE. The unified trigger achieves, respectively, F1 scores of 80% and 

86% at SGP97 and TWP06, which are far greater than the dilute dCAPE trigger with the threshold 

of 0 J/kg/hour. The results further prove that the joint XGB triggers are robust, and after being 

trained with more data that account for various cloud regimes, can potentially be applied globally. 

 

We note that the performance is not very good when the trigger is trained at one site and tested at 

another site, though the performance is better when the trigger is trained at MAO then tested at 

SGP than the other way around. The relatively better performance with the MAO-trained trigger 

suggests that the trigger trained at MAO has a stronger generalization capability than that at SGP. 

The tropical atmosphere at MAO is likely ‘out of bounds’ relative to the conditions of the SGP 

training; therefore, the model trained at SGP cannot extrapolate to MAO. The rules in Eqs (10) – 

(13) can confirm this finding. The rules at SGP indicate that dilute dCAPE has a larger threshold 

than that of MAO when convection happens. Consequently, it would fail to predict many 

convection events at MAO when applying the dilute dCAPE trigger trained with the SGP dataset. 
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This illustrates the importance of using joining dataset from multiple sites that represents various 

convective regimes to train ML model for obtaining a unified trigger suitable for use in global 

climate models. 

 

5 Discussion and Conclusion 

In this study, we implemented a novel deep convection trigger function using the XGBoost method, 

which is a state-of-the-art ML classification model. We first develop the trigger function separately 

for the SGP and MAO sites based on the long-term VARANAL forcing data from the ARM 

program. The XGB triggers achieve 91% and 93% F1 scores at the SGP and MAO sites, 

respectively. Compared with the commonly used CAPE-based trigger functions, the new trigger 

function offers a substantial improvement. Among the latter, the best trigger function is dilute 

dCAPE that achieves 79% and 85% F1 scores at the SGP and MAO, respectively. Further 

investigation indicates that the CAPE-based trigger functions, especially the undilute CAPE and 

undilute dCAPE triggers, activate convection too frequently. The ML trigger functions alleviate 

the overprediction of convection occurrence and further demonstrate much better skill in capturing 

the diurnal cycle of convection.  

 

To obtain explicit knowledge from the black-box ML trigger functions, a series of augmented rules 

are derived using a decision tree, which is built on the principal predictors identified by the XGB 

triggers. The rules drawn by the root node in the decision tree demonstrate better performance than 

traditional triggers using their default thresholds and are comparable to the triggers using well-

tuned thresholds. The rules of the selected leaf nodes are stricter in determining convective or non-

convective cases and improve the precision. However, the stricter roles are not closure conditions 

so some of the datasets are out of coverage. Therefore, in future work, supplemental rules would 

also be required to cover the rest of dataset.  

 

This study demonstrates that a unified ML trigger function may potentially be developed for use 

in GCMs by jointly training on two sites that have distinctively different convective conditions, 

using data from SGP and MAO as an illustration. The jointly trained ML trigger function performs 

as well as those that were separately trained for the individual sites, while the trigger function 
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trained using data at one site is clearly not well suited for another site if data from the latter are not 

included in the training process. This result suggests that a functional ML convective trigger for 

GCMs need to be trained with data accounting for major representative convective regimes around 

the globe.  

 

The insights obtained from examining the ML model also implies the formation of convection at 

different regions probably possesses distinct mechanisms or at least involves some different 

processes; hence it is necessary to develop a more comprehensive unified trigger scheme to better 

describe global convective process. The current study provides an exploration on this aspect by 

using the combined data from SGP and MAO sites. It would be interesting to include more data, 

such as oceanic VARANAL data from AMIE-Dynamo and TWP-ICE. Finally, it should be noted 

that training the ML model is sensitive to the dissimilar number of convection/non-convection 

events, where the training tends to key in on the conditions for the greater number of non-

convective events. We have tried restricting the training to use an equal number of cases for the 

two categories by under-sampling the non-convective events, but the improvement was not 

significant because of the smaller size of the training dataset. In the future, it might be possible to 

achieve a better development when more data are available. 
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Table 1. List of predictors for the machine learning trigger function. Layers used to represent the 

lower, middle, and upper troposphere are, respectively, 700-800, 300-700, and 200-300 hPa. 

Predictors Abbreviation 

Latent heat flux LHFLX 

Sensible heat flux SHFLX 

Air temperature at the surface Tsair 

Air relative humidity at the surface  RHsair 

Dilute dynamic CAPE generation rate ddCAPE 

Convective inhibition CIN 

Lifting condensation level  LCL 

Temperature in the lower troposphere T_low 

Temperature in the middle troposphere T_mid 

Temperature in the upper troposphere T_high 

Specific humidity in the lower troposphere q_low 

Specific humidity in the middle troposphere q_mid 

Specific humidity in the upper troposphere q_high 

Horizontal advective tendency of water vapor at lower 

troposphere 

q_adv_h_low 

Horizontal advective tendency of water vapor in the middle 

troposphere 

q_adv_h_mid 

Horizontal advective tendency of water vapor in the upper 

troposphere 

q_adv_h_high 

Horizontal advective tendency of dry static energy in the lower 

troposphere 

s_adv_h_low 

Horizontal advective tendency of dry static energy in the middle 

troposphere 

s_adv_h_mid 

Horizontal advective tendency of dry static energy in the upper 

troposphere 

s_adv_h_high 

Wind shear in the lower troposphere shear_low 

Wind shear in the middle troposphere shear_mid 

Wind shear in the upper troposphere shear_high 
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Table 2. The sample numbers for SGP and MAO 

 SGP MAO 
 All Positive Negative All Positive Negative 

All 22800 1991 20809 5840 935 4905 

Train 18240 1569 16671 4672 738 3934 

Test 4560 422 4138 1168 197 971 
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Table 3. Contingency table performance of convection trigger functions. For easy comparison, 

all values are normalized by the total number of the test cases. Perfect performance would be 

indicated by zeros in the FP and FN columns. 

 SGP  MAO  
 TP FP FN TN TP FP FN TN 

XGB  0.07 0.01 0.02 0.90 0.14 0.02 0.03 0.82 

dilute_dcape 0.05 0.03 0.04 0.88 0.10 0.00 0.07 0.83 

dilute_cape 0.05 0.17 0.04 0.74 0.04 0.09 0.13 0.74 

undilute_dcape 0.07 0.13 0.03 0.78 0.14 0.05 0.03 0.78 

undilute_cape 0.08 0.66 0.02 0.25 0.17 0.82 0.00 0.01 
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Figure 1. Flow diagram of gradient boosting machine learning method. The ensemble classifiers 

consist of a set of weak classifiers. The weights of the incorrectly predicted points are increased in 

the next classifier. The final decision is based on the weighted average of the individual predictions. 
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Figure 2. The performance of convection trigger functions at (a) SGP and (b) MAO. Results are 

shown for the XGB trigger, dilute CAPE, dilute dCAPE, undilute CAPE, and undilute dCAPE. 

Performance is quantified in terms of the F1 score, Precision (P), and Recall (R).  
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Figure 3. The learning curve of the XGB trigger at (a) SGP and (b) MAO. The learning curve is 

given as a function of the size of training samples for each site.  
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Figure 4. The time series of convection occurrence predicted by different trigger functions for the 

SGP. Results are shown for the XGB trigger, dilute dCAPE(dd), dilute CAPE (dc), undilute 

dCAPE (udd), and undilute CAPE (udc) at SGP. The occurrence of convection is indicated by a 

vertical line. The time series are for the summer seasons from 2006/06/16 12:00 to 2008/08/31 

23:00. The XGB trigger is trained by the first three quarters of the time series of the whole dataset 

at SGP. The PRECT row is the time series of the observed precipitation. The obs row represents 

whether convection is triggered as determined by the prescribed observational precipitation 

criterion (0.5 mm/hr). 
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Figure 5. Same as the Fig 5, but for MAO. The time series is from 2015/07/02 12:00 to 2015/12/31 

21:00. 
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Figure 6. The diurnal cycle of convection occurrence predicted by different trigger functions at (a) 

SGP and (b) MAO. The training and testing datasets are same with Figure 4 and 5. Results are 

shown for XGB trigger, dilute dCAPE, dilute CAPE, and undilute dCAPE.  
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Figure 7. The relative importance indices (x axis) of the top ten individual predictors from the 

XGB trigger. Results are shown for (a) SGP and (b) MAO.  
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Figure 8. Relationship between the relative importance index (left y-axis) of dilute dCAPE 

predictor from the XGB triggers and the XGB trigger performance in terms of F1 score (right y-

axis) as the function of entrainment rate (m-1). Results are shown for (a) SGP and (b) MAO. 
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Figure 9. The decision tree built by the top three relative importance predictors identified by the 

XGB trigger for (a) SGP and (b) MAO. In the tree structures, each non-leaf node divides the 

dataset into two subsets by a predictor and its threshold. The numbers in the non-leaf nodes (gray 

ovals) represent the total number of events in the dataset of the current nodes. The blue color in 

the leaf nodes represent cases that are determined as being non-convective, while the brown 

color is convective. 
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Figure 10. The performance of convection trigger functions for (a) SGP and (b) MAO. Results are 

given for the XGB trigger, dilute dCAPE for different thresholds (given in parentheses in J/kg/h), 

and following the ‘MLER’ rules given by Eqs. (10) – (13). The percentages given for the MLER 

results indicates the fraction of the cases that were in bounds for which a solution could be 

produced. Performance is quantified in terms of the F1 score, Precision (P), and Recall (R).  
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Figure 11. The performance of the XGB unified machine learning trigger function. The first two 

groups present the machine learning models trained and tested at the same site (as in Figure 2). 

The middle two groups present the machine learning models trained at one site and applied to the 

other site. The last three groups present the machine learning model jointly trained for the two sites 

and are tested jointly, as well as tested separately at each site.  
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Figure 12. The performance of the XGB unified trigger function applied to SGP97 and TWP06 

data. 

 

 


